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We demonstrate how a generalized self-consistent field theory for polymer melts that includes
elastic stress and strain fields can be applied to the study of AB diblock copolymers melts. By
obtaining the stress distributions for volume conserving strain loadings where lamellar and hexagonal
morphologies are stable, we show that the local stress is reduced at the domain interface but slightly
enhanced in the immediate vicinity of the interface. The overall stress profile is the result of the
combined effects of chain connectivity across the interface, which yields a positive contribution,
and the immiscible nature of the monomers, which leads to a stress reduction because of interfacial
tension.

Block copolymers spontaneously self-assemble into mi-
crophase separated nanodomain structures and the con-
trol and optimization of their viscoelastic properties is
the key to advances in processing methods [1–4]. In
contrast to the mechanical behavior of polymer gels or
rubber that form chemically cross-linked networks, block
copolymers undergo orientational alignment in the pres-
ence of shear which leads to their characteristic property
of high tensile strength. The development of methods
that incorporate mechanical aspects, in addition to com-
positional fields, are therefore crucial to exploring the na-
ture of the interplay between deformation and local mi-
crostructure. The aim of this work is to demonstrate that
self-consistent field methods [5], that have been very suc-
cessful over the last couple of decades in predicting poly-
mer morphology, can be generalized to yield local equi-
librium strains from which bulk elastic properties may be
obtained.

The elastic properties of copolymers have been studied
by methods that make use of scattering functions [6] or
those that monitor changes in the free energy of a given
morphology in response to a homogeneous deformation
of the unit cell. The free energy is obtained by using a
phenomenological model [7] or by the use of a self consis-
tent field approach [8, 9] and a fit to Hooke’s law provides
an estimate of the elastic moduli. Thus elastic proper-
ties of diblock copolymers in the lamelar phase [6, 7],
cubic phase [9] and gyroid and body-centered-cubic [8]
phases have been studied by such methods which have
also been extended to the lamelar phase of multiblock
copolymers [10] and ordered nano particle-filled diblock
copolymer [11] composites. Although these studies have
provided consistent and useful information on the effects
of polymer structures on elastic moduli, they do not yield
any direct insight into the local stress or strain distri-
butions and how these would vary with different forms
of loading. However, Fredrickson [12] has recently pro-
posed a method for homopolymers in which strain fields
may be added to the standard self-consistent field the-
ory (SCFT), but the method was not implemented to
obtain stress distributions. The aim of this letter is to

investigate if strains can be incorporated within SCFT
and to demonstrate it on diblock copolymer melts. We
calculate the stress distribution that results from an ap-
plied volume preserving tensile strain in the regime where
the lamellar and hexagonal phases are stable. Moreover,
at equilibrium we find that in the interfacial region the
stress is reduced as compared to its value in the interior of
a domain which is reached by a non-monotonic increase
of the stress away from the interface, i.e. there is a re-
gion between the interface and the domain center that is
characterized by a larger value of the stress. The stress
decrease at the interface is a generic property of phase-
separating immiscible mixtures, whereas the stress in-
crease arises because the monomers are connected across
the interface. We suggest that the resultant stress pro-
file is characteristic of microsegregated materials such as
copolymers.

We use a Gaussian microscopic formulation of a poly-
mer solution, expressed in terms of chain conformation
variables, that through the use of a Feynman-Kac for-
mula [13] is, converted into a field theory involving four
fields. In addition to the two fields [monomer densities,
φA(B), and their conjugate variables of monomer chemi-
cal potentials, ωA(B)] that occur in standard SCFT there
is the polymer elastic stress, σ, together with its conju-
gate field ε, which is the elastic strain. Each polymer
chain has degree of polymerization N , and A-monomer
fraction f . It is further assumed that each monomer
type has the same statistical segment length b. The lo-
cal interaction between each pair of monomers A and B
is quantified by the Flory-Huggins interaction parameter
χ. The polymer chains are parameterized by a variable s
that increases from 0 to 1 along the length of a chain. A-
block starts at s = 0 and terminates at the A-B junction
point s = f . Using this parameterization, it is conve-
nient to define two end-segment distribution functions,
q(r, s) and q†(r, s), which are determined by integrating
all possible configuration subject to the fields ωA(r) and
ωB(r) for chain segments running from s = 0 to f and
from s = f to 1, respectively. The distribution function
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q(r, t) satisfies the modified diffusion equation

∂q

∂s
=







R2
g∇∇ : [mq] − ( ωA − tr (ε) ) q for 0 ≤ s < f ,

R2
g∇∇ : [mq] − ( ωB − tr (ε) ) q for f ≤ s ≤ 1,

(1)

with the initial condition q(r, 0) = 1. The equation
for q†(r, t) is similar except that the right-hand side of
Eq. (1) is multiplied by −1 and the initial condition is
q†(r, 1) = 1. In Eq. (1) the tensor m is defined as

m(r; ε) = 1 [1 + tr (ε(r)) ] + 2ε(r), (2)

where ε(r) and 1 are the elastic strain and unity tensors,
respectively. The elastic strain tensor is introduced into
the theory via its canonically conjugated quantity, the
expressions for the microscopic components elastic stress
tensor σ(r) is [12, 14]:

σ̂jk(r) =
2

4R2
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)

+ σcδ(r) δjk (3)

where Ra(s) = (Rax(s), Ray(s), Raz(s)) represents the
continuous space curve describing polymer chain a. σc is
a constant isotropic tensor included to ensure that σ̂ is
traceless [15]. At equilibrium the fields φA(B) and ωA(B)

must satisfy

ωA(B)(r) = χ N φB(A)(r) + ξ(r), (4)

φA(r) + φB(r) = 1. (5)

Monomer densities for the A and B species are expressed
in terms of the the distribution functions

φA(r) =
V

Z

∫ f

0

ds q(r, s) q†(r, s), (6)

φB(r) =
V

Z

∫ 1

f

ds q(r, s) q†(r, s), (7)

where V is the volume of the system and Z =
∫

drq(r, 1)
the single chain partition function. Similarly can the
components of the stress tensor be expressed in terms
of the distribution functions

V

n
σjk = 2Nǫjk − R2

gδjk∇∇ : m − V

Z
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}

. (8)

Once the fields and densities are determined to satisfy
the self-consistent equations given above the free energy
per molecule F is

F

kBT
= χN

∫

dr φAφB − ln

(

Z

V

)

+
1

V

∫

dr [ωAφA + ωBφB − ε : σ] , (9)

which reduces to the Flory-Huggins mean-field free en-
ergy functional in the unstrained (ε = 0) case. In the
general unstrained case we find the periodic morphology
that minimizes the free energy in the usual way [16, 17],
and then we use Eq. (8) to determine the spatial distri-
bution of the stress tensor. In the case of finite imposed
strain the morphology is calculated in a similar manner
however the solution of Eq.(1) is now modified. We use
the numerical method described in Ref. [16] to calculate
the equilibrium configuration of the diblock melt for two
different two-dimensional phases a) the hexagonal phase
for f = 0.3, and b) the lamelar phase for f = 0.5.

Initially we solve the self-consistent equations, and cal-
culate the functions q and q† for zero strain (ǫ = 0). The

equilibrium distribution of the A monomers is presented
in Fig. 1a for the hexagonal phase, and in Fig. 1d for the
lamelar phase. The calculation has been performed on a
64×64 grid, and the minimum of the energy corresponded
to a lattice spacing dx = dy/

√
3 = 0.0725, for the hexag-

onal phase, and dx = dy = 0.07 for the lamelar phase.
Based on the equilibrium configuration, it is possible to
determine, using Eq. (8), all the components of the stress
tensor σ. The stress components are also given in Fig.
1. Figures 1b and 1e show the σxx component in the
hexagonal phase and in the lamelar phase, respectively,
while Figs. 1c, and 1f similarly show the σxy component.
In Fig. 2 we plot the stress profile close to the interface
for the lamelar structure of 1a. Even in the absence of
external strain we see that the stress distribution is non-
uniform. Far from the interface, the stress approaches its
zero background value, but it carries a modulation of the
background in the vicinity of domain interfaces. These
interfaces arise because the incompatibility between A
and B blocks makes it energetically favorable for A and
B monomers to spatially segregate. However, complete
phase separation is impossible because of the covalent
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FIG. 1: (Color) Unstrained (ε ≡ 0) equilibrium phases and
stress tensor components for f = 0.3 (a)-(c) and for f = 0.5
(d)-(e). (a) and (d) panels show the A monomer densities.
The corresponding tensor components σxx ((b) and (e)) and
σxy ((c) and (f)) are also shown.

bond between A and B blocks, hence domain interfaces
are formed. It is, therefore, expected that the middle seg-
ments in the interfacial region are predominantly aligned
perpendicular to the interface. In accordance with Eq.
(3) this alignment also contributes to the value of σij in
regions where the interfaces are perpendicular to the i or
j directions.

We consider the nature of the stress modulation in in-
terfacial regions not perpendicular to either i or j direc-
tions. We would expect an increase in the stress at a
domain interface because of alignment, and because the
chain segments are stretched more than average due to
the inherent repulsion of A and B segments in this re-
gion. It is, however, apparent from Figs. 1 and 2 that
this picture is incomplete. In all cases we observe a de-

crease of the stress at the interface. This stress reduction
is always accompanied by a slight increase of stress far-
ther from the interface followed by the final relaxation
to the background value. Similar decrease of the me-
chanical stress has been found using molecular dynamics
simulations in [18].
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FIG. 2: (Color) Stress (σxx) profile close to an interface for
the lamelar structure shown in Fig.1a.

The separate contributions from distinct parts of the
polymer chain allow for an explanation of the stress den-
sity profile. Let σ(1) be the contribution from the mid-
dle segment connecting the A and B blocks, and σ(2)

the contribution from the remaining segments. On av-
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FIG. 3: (Color) Contributions to the total stress profile in the
vicinity of an interface (red (blue) color corresponds to A (B)

monomers); (a) The stress component σ(1) arising from the
chain connectivity across the interface (b) The stress com-

ponent σ(2) arising from the immiscibility of the A and B
monomers. (c) Shows the density distribution of the A and

B monomers and the total stress σ(1+2).

erage, the middle segments will be located at the inter-
face and consequently this part of the chain is expected
to be stretched resulting in an average attractive force
(fij = −fji in Fig. 3a) between the A and B monomers
across the interface. Because the interface has a width,
there is a statistical distribution of these segments in the
vicinity of the interface and such bonds contribute to a
positive stress density profile as shown by σ(1) in Fig. 3a.
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FIG. 4: (Color) Components of the stress tensor for two dif-
ferent nonzero strain applied to the hexagonal phase (tr ǫ = 0
for both cases). For ǫxx = −0.1, ǫyy = 0.1 and ǫij = 0, for
i 6= j σxx (a), σyy (b), and σxy (c) are shown. For ǫij = 0,
for all i, j except ǫxy = −0.1 the components σxx (d), σyy (e),
and σxy (f) are shown.

In contrast, the behavior of σ(2) arises from the macro-
scopic properties of the interface that depend on the form
of the densities φA and φB [18, 19]. There is an energy
cost associated with the creation of the interface, which
appears as a positive interfacial tension γ. The interfa-
cial tension can be calculated from the gradient square
of the distribution, which will be positive. The iterfacial
tension is defined as the difference between the tangential
and perpendicular components at the interface and as the
tangential component is zero, γ = −σ(2), giving a nega-
tive contribution to the stress σ(2) (Fig. 3b). The total
stress density is the sum of the individual components,
σ(1+2) = σ(1) + σ(2) (Fig. 3c).

The equilibrium stress distribution and energy in the
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presence of an applied homogeneous strain (ǫ 6= 0) may
be obtained from the modified diffusion equation (1) to-
gether with the self consistent equations. Since we limit
our investigation to incompressible polymer melts, we
must apply a volume preserving strain (tr ǫ = 0). In
Fig. 4 we present the stress components for the hexago-
nal phase in the case of a 10% compression strain in the
x-direction ǫxx = −0.1, with ǫyy = 0.1 in order to pre-
serve the volume (Figs. 4a, 4b, and 4c), as well as in the
case of a shear strain with ǫxy = 0.1 (Figs. 4d, 4e, and
4f). The behavior of the polymer melt in the presence of
applied stress is summarized in Fig. (5) where we show
the spatially averaged stress as a function of the external
strain for the hexagonal phase.
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FIG. 5: The spatially averaged components of the stress ten-
sor σ as a function of the external strain ǫ in the hexagonal
phase.

In addition to the local effects at the interfaces, the
strain also influences the spatially averaged stress distri-
bution. A compression (expansion) of the melt, in the
(i, j) directions, leads to a decrease (increase) of the spa-
tially averaged stress in this direction (i,e, a change in
σij). However, it is also evident from Fig. 5 that σij

are affected although to a lesser degree. As the applied
strain undergoes the relatively large variation from −0.1
to 0.1 we see that the primary stress component changes
linearly, whereas the more secondary elements display
a nonlinear dependence for larger (|ǫij | > 0.01) applied
strain.

Figure 5 gives the corresponding components of the
elasticity tensor Kij,kl in the linear regime using σij =
∑

kl Kij,kl · ǫkl. Thompson et al. [10] previously calcu-
lated elastic constants by changing the volume and shape
of the simulation box. It can be shown that the two
methods are equivalent by a simple variable transforma-
tion of the coordinates. The present method has the
added advantage that it yields insight into the detailed
stress distribution over the entire volume of the melt.
A method that allows the box shape to also vary under
applied stress has recently been proposed [20].

In summary, we have demonstrated how self-consistent
field theory may be applied to obtain stress and strain

distributions for AB diblock copolymer melts. We have
shown that non-trivial stress effects arise at the domain
interfaces. Specifically, we have shown that the over-
all stress increases away from the interface and then de-
creases to its homogeneous value within the domain. We
have also emphasized our methodology’s ability to de-
termine morphological and local stress changes resulting
from applied strain. Finally, we have shown how linear
elastic moduli of a polymer melt in a given morphology
may be obtained.
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